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Abstract

Imagery is collected much faster and in significantly greater quantities today
compared to a few years ago. Accurate registration of this imagery is vital for com-
paring the similarities and differences between multiple images. Image registration is
a significant component in computer vision and other pattern recognition problems,
medical applications such as Medical Resonance Images (MRI) and Positron Emis-
sion Tomography (PET), remotely-sensed data for target location and identification,
and super-resolution algorithms. Since human analysis is tedious and error prone
for large data sets, we require an automatic, efficient, robust, and accurate method

to register images.

Wavelet transforms have proven useful for a variety of signal and image process-
ing tasks, including image registration. In our research, we present a fundamentally
new wavelet-based registration algorithm utilizing redundant transforms and a mask-
ing process to suppress the adverse effects of noise and improve processing efficiency.
The shift-invariant wavelet transform is applied in translation estimation and a new
rotation-invariant polar wavelet transform is effectively utilized in rotation estima-
tion. We demonstrate the robustness of these redundant wavelet transforms for the
registration of two images (i.e., translating or rotating an input image to a reference
image), but extensions to larger data sets are certainly feasible. We compare the
registration accuracy of our redundant wavelet transforms to the “critically sam-
pled” discrete wavelet transform using the Daubechies (7,9) wavelet to illustrate the
power of our algorithm in the presence of significant additive white Gaussian noise

and strongly translated or rotated images.

xi




Image Registration Using Redundant Wavelet Transforms

I. Introduction
1.1 Problem Statement

Image registration is the process which determines the best match of two or
more images acquired at the same or different times by identical or different sen-
sors. It is a necessary intermediate step when image analysts need to compare
the similarities and differences between multiple images. Examples of areas where
image registration is a significant component include computer vision and other pat-
tern recognition problems, medical applications such as Medical Resonance Images
(MRI) and Positron Emission Tomography (PET), and remotely-sensed data for tar-
get location and identification. Image registration also serves as the front-end for
super-resolution algorithms, which increase resolution by overlaying multiple coarse

images of the same object.

The military has a need for timely, accurate analysis of imagery to be used
in intelligence gathering and operations planning. Commanders must have the best
information as quickly as possible on which to base decisions regarding troop, ship,
and aircraft movements. For example, during the conflict in Yugoslavia in 1999,
unmanned aerial vehicles (UAVs) were used extensively to collect data concerning
the location of enemy surface-to-air missile sites, communication centers, and troops.
Operations planners relied heavily on this data to decide which enemy targets to
strike. The quality of the analysis of the imagery depends greatly on the accuracy

of the image registration.

Image analysts have typically had to analyze imagery manually by comparing

multiple pictures of the same object(s) and attempting to extract the differences.
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Imagery is collected much faster and in significantly greater quantities today com-
pared to a few years ago. Additionally, multiple images of the same object(s) taken
from satellites, UAVs, or other aircraft necessarily have different perspectives since
the observing satellite, UAV, or aircraft is not stationary and the object(s) of interest
may also be moving. These challenges make human analysis intractable and error
prone for large data sets. An automatic, efficient, robust, and accurate method to

register images is necessary.

Our research analyzes the use of redundant wavelet transforms in image reg-
istration. The shift-invariant wavelet transform and the rotation-invariant polar
wavelet transforms are derived and applied. A fundamentally new, robust method
to register images is developed, resulting in a more accurate registration of imagery

and providing a sound front-end for super-resolution algorithms.

1.2 Scope

Our research will demonstrate the robustness of applying redundant wavelet
transforms to the image registration problem. Although our registration algorithm
only addresses the registration of two images (i.e., translating or rotating an input
image to a reference image), the extension to a larger data set is certainly feasible
but not necessary to test the validity of our algorithm. Emphasis is on validation of
the algorithm using the shift-invariant wavelet transform and the newly developed
rotation-invariant polar wavelet transform, ensuring accurate registration is achieved
in the presence of noise. The algorithm registers images that have been strongly
translated or rotated, but not both. Minimal effort is made to optimize the speed
of registration. Validation of our registration method is accomplished by applying
it to strongly translated or rotated noisy versions of the “Lenna” and “cameraman”

images commonly used in image processing.
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1.3 Thesis Organization

Chapter 2 provides the background of this thesis. Fundamentals of filter banks
and wavelet theory are discussed. The relationship between filter banks and the
discrete wavelet transform is analyzed. A review of current Fourier and wavelet
registration techniques and their limitations provides a baseline for comparing these

techniques to our registration algorithm.

Chapter 3 describes our image registration algorithm in detail. The shift-
invariant wavelet transform used in translation estimation and the rotation-invariant
polar wavelet transform utilized in rotation estimation are developed. The new con-
cept of masking, which suppresses the adverse effects of noise and increases com-
putational efficiency, is presented. Our process of generating initial estimates from
the wavelet bandpass subbands and then refining these estimates to achieve the final

estimate is explored.

Chapter 4 provides a validation study on the accuracy of our registration al-
gorithm in the presence of mild and significant additive white Gaussian noise. Our
shift-invariant and rotation-invariant wavelet transforms are shown to provide su-
perior registration accuracy over the critically sampled discrete wavelet transform.
Our decision to use the bandpass subbands over the highpass subband is shown to
be sound and we empirically determine the best choice of significant wavelet co-
efficients to keep for feature matching for our test images. Finally, we show our
algorithm is robust since it accurately estimates rotation when our test images are

both translated and rotated.

Chapter 5 summarizes the results and outlines recommendations for future

research.
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II. Background
2.1 Quverview

The basics of filter banks, which are used in the implementation of the discrete
wavelet transform are presented first. Next, we discuss how the discrete wavelet
transform is constructed from orthogonal subspaces and we derive the wavelet recur-
sion equations, which govern all orthogonal wavelets. We then move to biorthogonal
wavelets which have useful properties, but do not obey the wavelet recursion equa-
tions as orthogonal wavelets do. The two-dimensional discrete wavelet transform is
then developed and we finish our discussion on wavelets by stating some properties
that make them attractive for registration. Finally, we present some Fourier and
wavelet registration techniques and their limitations. These serve as a baseline for

comparison to our registration algorithm described in Chapter 3. -

2.2 Filter Banks

We provide a quick introduction to filter banks required to understand their
use in the implementation of both the discrete wavelet transform and the redundant
wavelet transform, which is presented in the next chapter. For more rigorous de-
scriptions of filter banks, refer to (5, 6, 29, 32, 33). Additional information is also
located in Appendix A.

2.2.1 Building Blocks. A filter bank is a collection of filters with a common
input z(n) to M channels and a single output Z(n) as shown in Figure 2.1. The set
of filters Hy(z) are referred to as the analysis bank and the set of filters Fy(z)
are known as the synthesis bank (32, 33). For the purpose of implementing the
discrete wavelet transform, we are only interested in maximally decimated uniform

filter banks. That is, filter banks which have the same number of inputs and outputs
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(input one image, output one image) and follow the relationship Y, 1/M}, = 1, where

Mj, is the decimation ratio in the k™ channel (32).

A

R X[n]
[ M- M| Fy(2) ,
—H,(2)|—{IM MF,(z)—
| Hy, (2)—|'M M—{Fy. (@)
Analysis Synthesis
Bank Bank

Figure 2.1.  M-channel filter bank. The analysis bank has one input and M outputs.
The synthesis bank takes the M channels to a single output.

The two primary building blocks of filter banks are the decimator and expander,

both of which are linear, shift-varying elements (32). The decimator is defined as
yp(n) = z(Mn)

where M is a positive integer known as the decimation ratio. The expander is defined

as

z(n/L) ,if nis an integer multiple of L
ye(n) =
0 , else

where L is a positive integer known as the vexpansion ratio. Decimation by M = 2
keeps every other point of a sequence z(n), decimation by M = 3 keeps every third
point, etc. Similarly, expansion by L = 2 places a zero between every point of a
sequence z(n), expansion by L = 3 places 2 zeros between every point, etc. See

Figure 2.2 for examples of decimation and expansion.

For y(n) = z(Mn), where M is the decimation ratio, the corresponding nota-

tion is y(n) = (x(n)) {m. Likewise, for y(n) = z(n/L), where L is the expansion
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Original Data Sequence

2

3 4 5 6

7

8

Function Resulting Output
@ |2 -
(b) |J3 A S
@] v2re ety o o
@ 3] 1o oz oso 0400 s 0
Figure 2.2.  Examples of decimation and expansion. (a) Decimation by 2.

(b) Decimation by 3. (c) Expansion by 2. (d) Expansion by 3.

ratio, the corresponding notation is y(n) = (x(n)) 1. Figure 2.2 shows the block

diagram for an expander and decimator.

2.2.2 Noble Identities.  Having presented the fundamental building blocks
of filter banks, we now discuss how to connect them (5, 32). Using the notation
defined in Section 2.2.1, the following equations describe the different ways in which

decimators may be combined

a{z(n)} Iy = {az(n)} Iy, @ any scalar (2.1)
{z1(n) + z2(n)} I = {z1(n)} Im +{z2(n)} In (2.2)
{z1(n) x 22(n)} Iy = {z1(n)} dnr x{z2(n)} dns . (2.3)

These equations still hold when the decimators are replaced by expanders (32).

Cascaded decimators and expanders may only be interchanged when the dec-
imation ratio M and the expansion ratio L are relatively prime (i.e., the lowest
common denominator between M and L is 1). Thus, the following becomes valid

when M and L are relatively prime
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{z(m)} dac} 1= {{z(n)} T} dnr -

For a sequence z(n) and digital filter h(n) with z-transforms X (z) and H(z),
respectively, this leads directly to

{(X(HE) w = {X(2) bu}H(2) (24)
{(X@)H)} o = {X(2) 1L}H(2") (2.5)

These equations, which are only valid when H(z) is comprised of integer powers
of z, are known as the Noble Identities. They are the rules we must follow when
interchanging filters with our building blocks (32). Armed with this basic knowledge

of filter banks, we move on to wavelets.

2.8 The Wavelet Transform

We present some useful properties and provide a concise overview of the discrete
wavelet transform in this section. See (3, 6, 8, 22, 29) for more extensive information

on wavelets.

2.3.1 Wavelet Subspaces. Wavelet transforms provide an efficient multi-
scale representation by projection of a function into smaller orthogonal subspaces
formed from shifts and dilations of a lowpass scaling function ¢(t) and a highpass

wavelet function ¥(t) (8).

Let {Vin}mez be a sequence of nested subspaces in L?(R) such that V,, C
Vino1 V. m € Z. Let f be a function which exists in the subspace V,,_; for some m.
Let P,, be the operator which projects f into the nested subspace V;, C V1. Pp
preserves the portion of f that lies in V;,, and eliminates the part of f that is not in

V-




Let {Wi}mez be a different sequence of nested subspaces in L?(R) such that
Wi C Vi1 V'm € Z. Let the span of V,,, U W,,, equal V,,,_1, where V,,, and W,, are
orthogonal subspaces. Thus, V,_; =V, @ W,,, and V,, N W,,, = ¢. See Figure 2.3.

Figure 2.3.  Nested subspaces of the orthogonal wavelet transform. The V,, are
spanned by shifts and dilations of a lowpass scaling function while the
W, are spanned by shifts and dilations of a highpass wavelet function.

Now let @, = I — P,, (where I is the identity operator) be the operator which
projects f into the nested subspace W,, C V,_;. As before, P, preserves the
portion of f that lies in W, and eliminates the part of f that is not in W,,. Finally,
P.Qm = QunPy =0, where 0 is the zero operator. |

2.8.2  The Wavelet Recursion Equations.  Let the set of functions {¢y, » }nez
be an orthonormal basis for V;,, and let the set of functions {t,,  }ncz be an orthonor-

mal basis for Wy,,. We can expand ¢, , in terms of {¢,,_1 4} since V;, C V,,,_;. Thus,
¢m,n(t) = Z cm—l,n(k)¢m—l,k(t)‘
k

To find a particular coefficient c,,_1,(k), we take the inner product of ¢,
with ¢,—1 %, where the inner product of two real valued functions f and g is defined

as

(fig)= /_o; f(t)g(t)dt.
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If we let hy(k) = (dmn, dm—1,k), the expansion of @y, , now becomes
¢’m,n(t) = Z hn(k)¢m—1,k(t)-
k

The set of functions {¢,, , } must satisfy the above equation for all m to achieve
an orthogonal wavelet transform. To form the discrete wavelet transform, we must
further impose that each {¢,,»} be constructed from integer shifts (n) and dilations

(2™) of our scaling function ¢(¢). Thus, our expression for {¢m,,} becomes
¢(t —n) =Y h(k — 2n)¢(2t — k). (2.6)
k
Performing the same derivation for {ty, »}, we have
Yt —n) = ng 2n)p(2t — k), (2.7)

where g(k — 2n) = (Ymn, dm-1,). Equations 2.6 and 2.7 are the wavelet recursion

equations (3).

2.3.83 Construction of the Discrete Wavelet Transform. In Sections 2.3.1
and 2.3.2, we constructed a set of orthogonal subspaces to permit the multiscale

decomposition of a signal f and we derived the wavelet recursion equations which

~ govern our orthogonal wavelet transform. Now, we derive the discrete wavelet de-

composition of f.

First, we assume that f exists entirely in V,,_; and may be completely rep-
resented as a linear combination of basis functions for subspace V,,_; for m € Z,

where typically m = 1.

The projection of f into V;,, can be expanded in terms of the basis functions of

Vin and the projection of f into W, can be expanded in terms of the basis functions
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of W,,. Thus, we have

[me] (t) = Z cm(n)¢m,n(t)
[me] (t) = Z dm(n)wm,n(t)y

with cm(n) = (me, ¢m,n) and dm(n) = (mea wm,n>'

Since P, + Q,, = I, we can write

f:me+me7

and any coefficient ¢,,(n) in V,,_; can be written as

cm(n) = (Pnf, ¢mn)
= ((f — @m/f), ¢mpn)
= ([, 0mn) = (Qmf, $mn)
= (f, mn) -

If f is expanded in terms of the basis functions for V,,_; and substituted into

the expression above, we have

enl®) = (S ms(K)ons) s 6m
= 31 (8) s )

Similarly, it can be shown that

dm(n) = Zcm—l(k) <¢m—1,k; ¢m,n) .
k




Recall from Section 2.3.2 that for the case of the discrete wavelet transform,
the inner products in the expressions for ¢,,(n) and d,,(n) are digital filters h and g

independent of decomposition level

h(k - 2”) = (¢m—1,k, ¢m,n)
g(k - 2”) = (¢m—1,ka 'L/)m,n> .

It follows that if we know the coefficients ¢,,_1(n) of f € V,_1, then the

coefficients of the projection of f into V,, and W,,, respectively, are given by

en(n) = gkjcm_l(k)h(k-zn) (2.8)

dm(n) = zk:cm_l(k)g(k—-Zn). (2.9)

Now that we have the coefficients of the projection of f into V,,, and W,,,, f can
be further decomposed into V,,_, and W,,_;, the orthogonal subspaces of V,,, using
the same formulas since the digital filters h and g are independent of decompostion
level m. We now have a recursive routine to decompose f into smaller orthogonal
subspaces. This makes the discrete wavelet transform multiscale: it consists of a set
of scaling (coarse) coefficients ¢,,(n), which represent coarse signal information at
scale m = M, and a set of wavelet (detail) coefficients d,,(n), which represent detail

signal information at scales m = 1,2, ..., M (8).

Equations 2.8 and 2.9 provide insight into the filter bank implementation of the
discrete wavelet transform (Figure 2.4). We see that the discrete wavelet transform
can be implemented using cascades of two channel filter banks with analysis bank
digital filters h and g, where h and g are traditionally lowpass and highpass, respec-

tively (3). If h and g satisfy their respective wavelet decomposition requirements,

h(k - 2”) = (¢m—1,ny ¢m,n>
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g(k - 277') = (¢m—1,m¢m,n> )

then they form a perfect reconstruction set (the transform is invertible using these
filters) (32). A detailed explanation of reconstruction of the original signal from its

wavelet decomposition is contained in Appendix B.1.

() l >

H(z) [} 2+ @
¢ (m)
H(z) —{} 2
f[n] H(z) |4 2 G(z) |4 2> 4@
[eo(m)] G(z) |~ l 2| a,m)
G(@) 42— d,@m)

Figure 2.4.  Filter bank implementation for three iterations of the discrete wavelet
transform. Coarse coefficients cp,—1(n) are created by convolving the
original signal f[n] with lowpass filter h and downsampling by two.
Detail coefficients d,,(n) are produced by convolving the original signal
with highpass filter g and downsampling by two. Lower scales are
formed by iterating on the coarse coefficients of the next highest scale.

2.3.4 Extension to Biorthogonal Wavelets. Everything to this point in
our analysis has assumed orthogonal spaces, which forces the analysis and synthesis
filters to be identical. Now, we loosen this restriction and form a biorthogonal

wavelet transform with dual spaces V,, and W,, where V,, = span{qzm,k} and

Wy = qun{z,zm,k} (8). For biorthogonal spaces, we have V,, N W, = ¢ and

Vin N W,, = ¢. Also, the basis functions must satisfy the biorthogonality condition,

<¢m,ka$m,n> = 6(k_n) (210)
<¢m,k7'§zm,n> = 5(k_n) (211)

Figure 2.5 demonstrates the biorthogonal decomposition of V; = R3. V; is

spanned by ¢ and ¢;, while Viis spanned by $0 and $1- V) is orthogonal to its dual
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space Wi. Likewise, Vi is orthogonal to W;. All basis functions satisfy Equations

2.10 and 2.11, the biorthogonality condition.

Figure 2.5.  Example of biorthogonal wavelet spaces in ®%. Span (V; U W) = R3
and span (V; U W1) = R3. V; L W, and V; L W,. All basis functions
satisfy the biorthogonality condition.

Biorthogonal wavelets are more desirable than orthogonal wavelets for two rea-
sons. First, they allow for the easy design of linear phase filters, which are important
because phase information is more significant than magnitude in image reconstruc-
tion (19). All orthogonal wavelets are composed of even length filters. Filters that
produce biorthogonal wavelets may be of odd length. Thus, we may design symmet-
ric biorthogonal filters to produce linear phase. Next, biorthogonal wavelets allow
for larger size linear phase filters. The only orthogonal wavelet filters that have lin-
ear phase are the Haar filters, which are of length two. In general, larger size filters
correspond to smoother wavelet functions and a more parsimonious signal represen-
tation (29). More specific details concerning biorthogonal wavelets can be found in

Appendix B.2.

2.8.5 The Two-Dimensional Discrete Wavelet Transform. We transform

two-dimensional signals (images) by first processing the rows and then the columns
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in a separable fashion. Figure 2.6 a and b show the Lenna image and one iteration of
the discrete wavelet transform of Lenna, respectively. The discrete wavelet transform
is a dyadic decomposition; the rows and columns of the original image are filtered
and downsampled by a factor of two. Each of the four quadrants is known as a

subband. The subbands preserve certain characteristics of the original image.

(a) Lenna (b) Transformed Lenna

Figure 2.6.  Original Lenna image and one iteration of the discrete wavelet trans-
form of Lenna. The discrete wavelet transform is a dyadic decompos-
tion. FEach of the four subbands contains different characteristics of
the original image.

We refer to the top left subband as the LOW—LOW (LL) subband, where LL
refers to the type of imrage characteristics the subband preserves. The convention is
that first letter of the subband refers to processing performed along the rows and
the second letter refers to processing performed along the columns. Thus, for the LL
subband, we first lowpass filter the rows and then lowpass filter the columns. The
result is a coarse approximation of our signal since lowpass filtering both the rows
and columns blurs the edges (high frequency components) of the original image in

both directions.
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As we examine the type of information provided by the other subbands, we see
that the discrete wavelet transform is highly directional. The bottom right subband
is the highpass or High-High (HH) subband. It preserves edges oriented at 45°
(the “cross-hatch”) because both the rows and columns are highpass filtered. The
top right subband is known as the Low-High (LH) subband. It blurs horizontal
lines because the rows are lowpass filtered, but it preserves vertical lines because
the columns are highpass filtered. The lower left subband is known as the High-
Low (HL) subband. It preserves horizontal lines because the rows are highpass
filtered, but it blurs vertical lines because the columns are lowpass filtered. The LH
and HL subbands are collectively known as the bandpass subbands; the highpass
and bandpass subbands together are referred to as the detail subbands. Thus, the
discrete wavelet transform of an image is a coarse approximation (LL subband) of

the original image and a series of details (LH, HL, and HH subbands).

The frequency responses of the filters used to form the subbands are given in
Figure 2.7. Although the Daubechies (7,9) wavelet was used to create the frequency
response plots, the general shape of the plots is the same for all wavelets. The
white areas indicate where frequency components of the image are preserved. The
black areas represent which frequency components of the image are attenuated. For
example, we see in Figure 2.7 b that the filters that create the LH subband preserve
the high frequency components of the columns, but do not pass high frequency
components of the rows. Hence, the LH subband preserves vertical edges in an
image. Similar observations may be made from the other frequency response plots,
which clearly illustrate why the subbands of the discrete wavelet transform are highly

directional.

Lower scales are formed by iterating on the coarse approximation (LL subband)
of the next highest scale. Each new scale is given by a coarse approximation of the
LL subband of the next highest scale and a series of details. Figure 2.8 illustrates

the multiscale effect of the discrete wavelet transform.
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(a) LL subband filters (b) LH subband filters

Figure 2.7.

(c) HL subband filters (d) HH subband filters

Frequency responses for the filters used to create the (a) LL subband,
(b) LH subband, (c) HL subband, and (d) HH subband of the discrete
wavelet transform. In each plot, the origin (DC value) is at the center.
The x-axis corresponds to the spatial frequencies along the rows and
the y-axis corresponds to the spatial frequencies along the columns of
the original image. White areas pass frequencies and black areas at-
tenuate. Although the lowpass and highpass filters of the Daubechies
(7,9) wavelet were used for these plots, the general shape of the fre-
quency responses of other wavelets look similar.
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Low-Low __| m
Subband
. Low-High
Subband
High-Low
—s T . High-High
e e — Subband

Figure 2.8.  Three iterations of the discrete wavelet transform. The second scale
is shaded in gray to distinguish it from the other two. The signal
characteristics preserved by each subband are shown.

2.3.6 Properties of Wavelets. Now that we have constructed the discrete
wavelet transform, we mention three primary and two secondary properties that
make it attractive for image registration. A detailed explanation of the application of
these properties to the registration problem is given in Chapter 3. Primary properties

are the following (22):

1. Locality - wavelet coefficients are localized simultaneously in space and spatial

frequency
2. Parsimony - wavelet coefficients of real world signals (images) tend to be sparse

3. Multiresolution - wavelet coefficients are shifted and dilated into a nested set

of scales

Secondary properties of importance are the following (20, 21):

1. Clustering - givén a large/small wavelet coefficient, adjacent wavelet coeflicients

tend to also be large/small

2. Persistence - large/small values of wavelet coefficients tend to propagate across

scales
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Having presented an overview of filter banks and wavelets, we now discuss their

application in image registration.

2.4 Image Registration

Image registration is the process which determines the best match of two or
more images acquired at the same or different times by identical or different sensors.
The set of input images are matched relative to a set of reference images. Registration
is a necessary first step in image processing when comparing the similarities and

differences between multiple images.

2.4.1 Fundamentals of Image Registration. In (2), Brown describes the

four basic components of image registration:

(a) The feature space which contains the characteristics extracted from the

reference and input images that are used for matching.

(b) The search space which contains the class of potential transformations that
establish the correspondence between the reference and input images. The most com-
mon transformations used are rigid (scaling, translation, and rotation of the input
image relative to the reference image), affine (a rigid transformation plus a shear
and aspect ratio change), and polynomial (reference image pixels are transformed

according to a polynomial function).

(c) The search strategy which chooses the transformations to be used. Exam-
ples include local versus global search, optimization techniques, and the multireso-

lution search.

(d) The similarity metric which measures how well the match is between the
reference and input images for the selected search space. Correlation between the

reference and input images is most commonly used, but other metrics may be utilized.
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Of the four basic components, the feature space is most important. Proper
feature selection is critical for accurate registration. According to Li and Zhou (18),

features to be used in registration should be:

1. Present in the same position in the image (consistency);
2. Located in high contrast regions;

3, Distributed proportionally across the image;

4. Unique in their surrounding areas.

Manjunath et al discuss the importance of feature detection in terms of gener-
ality and robustness (23). Feature detection must be general in the sense that it can
be applied to many different registration problems. To achieve robustness, the same
feature locations must be consistently identified regardless of translation, rotation,
and minor scaling and deformation between the input and reference images. It is for

this reason we use redundant wavelet transforms.

There are two main types of feature detectors, image-based and edge-based.
Image-based detectors select points based on image grayscale intensity, which is not
consistent in imagery acquired from multiple sensors. Edge-based methods perform
better than image-based techniques because they do not rely on intensity. Rather,
edge-based methods look for certain levels of energy, not the amount of energy
present. It is the differences between contrasting regions within images that the
human eye detects more readily, not absolute intensity values. Thus, edge-based
methods are preferred since they appeal more to the human visual system. In Chap-

ter 3, we examine the role wavelets play in our edge-based feature detection scheme.

Having presented the key aspects of image registration, we now discuss existing

methods and their limitations to provide a baseline for comparison to our algorithm.

2.4.2 Fourier Registration Technigues.  Fourier techniques are the precur-

sor to modern wavelet registration techniques. Fourier methods have been used for
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many years in signal representation and analysis. Images may be represented as the
summation of a series of sinusoids (Fourier series) in the spatial domain or trans-
formed into their frequency components using the Discrete Space Fourier Transform,

which is defined as

jwing ,—jwin
X (wy,w2) Z Z (nq1,ng)e 1M gTIeM
N1=—00 Ny=—00

where z(ny,n,) is a spatial domain image (19).

Brown states that nearly all Fourier image registration techniques utilize phase
correlation, which results from the shift theorem (translation property) of the Fourier
Transform (2). To account for rotation in images, phase correlation is still applied
except that we first convert our images from rectangular coordinates to polar coor-
dinates. See (1, 4, 12, 24) for specific implementations of Fourier registration using

phase correlation.

2.4.8 Limitations of Fourier Registration Techniques. A significant limi-
tation utilizing Fourier techniques to register images is that image decomposition is
localized in frequency only. Having resolution only in the frequency domain makes it
impossible to determine where the edges (high frequency components) of the image
are spatially located. Knowledge of the location of edges is critical because they
produce the best features to use in matching. The Short Time (Windowed) Fourier
Transform (STFT) partially alleviates this problem. By performing the Fourier
Transform on a fixed window (usually Gaussian) of the image, it is possible to ob-
tain some localization in space and frequency that is not possible with the Fourier
Transform. Because the STFT is based on a fixed window, it does not provide
enough spatial information for high frequencies. This deficiency is overcome using

wavelet techniques.
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2.4.4 Wavelet Registration Techniques. Previous work has shown the
promise of wavelet image registration. We explain a few of these methods that

directly influenced the development of our registration algorithm.

The largest positive wavelet coefficients obtained from an orthogonal decom-
position using Daubechies filters have been used effectively (13, 14, 15, 16). When
using cross correlation as a feature matching technique, features larger than twice
the size of the wavelet filters were correctly registered using the bandpass subbands

of the Daubechies wavelet decomposition (28).

Le Moigne and Zavorin compare the robustness of Daubechies filters and Si-
moncelli steerable filters to translation, rotation, and noise parameters over large
ranges (17). They propose a three step approach for the registration of remotely-
sensed imagery. First, the wavelet transform is performed on the reference and
input images. Next, domain independent features are extracted at each scale of the
wavelet decomposition. Finally, correlations are performed at each scale between the
wavelet domain images to find the best rigid transformation. This iterative process
improves accuracy when going from coarse to fine resolution of the wavelet coeffi-
cients. Additionally, Simoncelli steerable filters are shown to perform better than
the orthogonal Daubechies filters because of the invariance of Simoncelli steerable
filters. Invariance is achieved because Simoncelli’s steerable pyramid decomposition

is a redundant representation of the wavelet transform (27).

Djamjdi and Corvi also use the largest positive wavelet coefficients as features
(7, 9). Unlike Le Moigne and Corvi, Djamjdi utilizes an d-trous, non-pyramidal,
wavelet decomposition scheme which is computationally slower than the pyramidal
wavelet decomposition. However, both Djamjdi and Corvi match features locally
one by one whereas Le Moigne computes a global transformation over the whole
image. A unique aspect of Corvi’s method is that it employs a clustering technique
to provide a significantly more reliable initial estimate for strongly translated and/or

rotated images. Also, rather than exclusively using the largest positive wavelet coef-
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ficients as features for matching, it leverages both the largest positive and negative
wavelet coefficients. One final difference is that Djamjdi computes a polynomial

transformation versus a rigid transformation computed by Le Moigne.

A fast method to register images using the wavelet modulus maxima, which
is defined as the highpass subband of any scale in a wavelet decomposition, is pre-
sented by Sharman (26). Although Sharman utilizes the largest magnitude wavelet
coefficients as features like the previously described methods, his technique differs in
that the bandpass subbands of the wavelet decomposition are disregarded. Rather,
the highpass subband is exclusively utilized because his method utilizes edge-based
feature detection and significant edge information is contained in the highpass sub-
band. Using correlation as the similarity metric, this point-to-point feature matching
method has been shown to be near perfect for rigid transformations in the presence

of little noise.

Sharman’s technique is meant for quick registration of images that are not
strongly translated, rotated, or scaled. Zheng and Chellappa present a more robust
image registration algorithm that estimates translation, rotation, and scale using
a point-to-point edge-based feature extraction method (34). Rotation is estimated
first, then an intial estimate of translation and scale are computed from a small num-
ber of features extracted using the Gabor wavelet model for detecting local curvature
discontinuity. Finally, hierarchical feature matching is used to compute translation,
rotation, and scale precisely. This technique has been shown to accurately register
images in the presence of large translation and rotation and when the images lack

significant features.

2.4.5 Challenges Using Wavelet Techniques.  Wavelets show great promise
for use in registration algorithms, but there are issues that must be addressed. The

following are the three most crucial challenges to overcome: (1) lack of invariance of
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the discrete wavelet transform, (2) choice of wavelet (dependent on the image), and

(3) the use of a single global transformation may not be acceptable.

In terms of our basic requirements for an image registration algorithm as de-

scribed in Section 2.4.1, wavelets certainly pass the generality requirement as they

may be applied to many different images. They do not, however, meet the robust-
ness specification because they are sensitive to translation and rotation. Translation
or rotation-invariance occurs when the wavelet transform commutes with the trans-
lation or rotation operator, respectively. Simoncelli et al state that translation or
rotation invariance cannot be expected in a system based on convolution and sub-
sampling such as the filter bank implementation of the discrete wavelet transform
(27). The critical sampling condition of the discrete wavelet transform must be
eliminated to achieve the desired translation or rotation invariance for image reg-
istration. Invariance comes at the costs of slower computation time and a more

memory intensive process.

Proper choice of the wavelet function is another issue to consider when utiliz-
ing wavelet transforms for image registration. Sharman et al note that the energy
content of a given subband is different depending on the choice of the wavelet basis
functions (25). For example, an image dominated by squares and rectangles would
require a wavelet basis that best approximates images dominated by arcs and circles.
More wavelet coefficients will be produced since the wavelet basis will not approxi-
mate the image well. Thus, registration accuracy is improved because the number

of features that may be used for registration increases.

Finally, the problems of using a single global transformation to map an im-
age onto a common standard must be considered. Unser et al state that the two
principal difficulties encountered when using a single global transformation are (1) a
proper deformation model is rarely known for the reference image, and (2) analysis
methods lack a strong statistical background because pixels in the spatial domain

are correlated in some manner and not statistically independent as desired (31).

2-20




2.5 Summary

The basics of filter banks, which are used in the implementation of the dis-
crete wavelet transform, were presented. The wavelet recursion equations, which all
orthogonal wavelets obey, were derived. From these equations, the discrete wavelet
transform was constructed from integer shifts and dilations of the wavelet basis
functions. Biorthogonal wavelets do not obey the wavelet recursion equations like
orthogonal wavelets, but are useful because they could be constructed from large, lin-
ear phase filters. Next, we discussed the two-dimensional discrete wavelet transform,
which is a separable transform since it is a product of two one-dimensional trans-
forms; we first process the rows and then the columns. We concluded our wavelet
discussion by stating some useful properties of wavelets that make them attractive
for registration. Finally, we presented some Fourier and wavelet registration tech-
niques and their limitations to serve as a baseline for comparison to our registration

algorithm, which we describe in the next chapter.

2-21




III. Methodology
3.1 QOverview

We require our image registration algorithm to be automatic, general, robust,
and accurate. First, a computer must be able to perform the registration of images
with little or no human interaction (automatic). Second, our algorithm must be
general enough to handle many different kinds of images. Third, it must be robust
enough to handle strongly translated or rotated images in the presence of additive
white Gaussian noise. Finally, accuracy is still the primary concern since image

registration serves as a crucial first step in image processing of large data sets.

We discussed Fourier and wavelet techniques and their limitations in Chapter 2.
Our algorithm improves on some of the key ideas from each including, but not limited

to, the following:

1. Matching the largest magnitude wavelet coefficients of the bandpass subbands;
2. Performing a global rigid transformation (a translation or rotation) of the data;
3. Generating initial estimates of translation or rotation and then refining;

4. Converting from rectangular to polar coordinates to more accurately estimate

rotation.

We further expand on these ideas by introducing the new concepts of masking
and polar wavelets. Before describing our registration algorithm, we must discuss

why wavelets are well suited to tackle the image registration problem.

3.2 The Wavelet Registration Concept

Proper feature selection is critical for accurate registration. Recall from Sec-

tion 2.4.1, we desire to select features per the criteria of Li and Zhou:

1. Present in the same position in the image (consistency);
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2. Located in high contrast regions;
3. Distributed proportionally across the image;
4. Unique in their surrounding areas.

Recall from Section 2.3.6, we discussed primary and secondary properties of
the discrete wavelet transform which make it especially useful for image registration.
We now examine how these properties satisfy the above criteria so we may produce

a general and robust registration algorithm.

Consistency of features is essential for registration success. We need to be able
to select a feature in the input image and know that it will be in the same position
in our reference image. The parsimony of the wavelet coefficients guarantees that
there are a limited number of significant coefficients to use as features for matching.
Since we have a limited number of features for each image, we can reasonably expect

to select the same ones each time even if noise significantly degrades our images.

Edges in images typically serve as a dividing line between high contrast regions.
Because of their localization in space and spatial frequency, wavelets are natural
edge detectors. Together, locality and clustering of wavelet coeflicients help to select

groups of features located in high contrast regions.

Proportional distribution of features helps achieve a robust algorithm that can
better handle the adverse effects of noise. Parsimony and clustering ensure that we
have groups of significant features in our images. Locality ensures that these clusters
of significant coefficients are spread throughout each image since edges are typically

distributed throughout images.

Finally, we desire unique features for matching. Again, parsimony and cluster-
ing ensure that we have clusters of significant coefficients to choose. We can expect
to select the same limited number of coeflicients every time when using wavelets be-
cause of locality. It is the uniqueness of these features that makes wavelet registration

more accurate than spatial registration.
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For the last three criteria, redundant wavelet transforms and the discrete
wavelet transform perform about the same. The real power of a redundant wavelet
transform over the discrete wavelet transform lies in its ability to consistently ex-
tract the same features. This is a direct result of how each transform is created.
The redundant wavelet transform is the product of an undecimated filter bank that
contains no time-varying components. The discrete wavelet transform, however, is
critically sampled using time-varying decimators which destroy the consistency we

desire.

Additionally, orthogonal wavelet transforms compress signal information (par-
simony) while keeping noise scattered and white. Biorthogonal wavelets also com-
press signal information, but they do not keep noise completely white. The noise
becomes correlated with the signal information, but not nearly enough to negatively
impact our feature matching. Redundant wavelet transforms can never be orthogo-
nal, but like biorthogonal wavelets, they exhibit the ability to scatter noise enough

for registration purposes.

From this point forward in this thesis, the term discrete wavelet transform
refers to the critically sampled discrete wavelet transform. The term redundant
wavelet transform refers to both the shift-invariant wavelet transform and the rotation-
invariant polar wavelet transform. Note, we are not implying that these redundant
wavelet transforms are continuous; they are not. Rather, we are simply distinguish-

ing between redundant and critically sampled wavelet transforms.

3.8 Qur Image Registration Algorithm

We now present our image registration algorithm in detail, beginning with
translation estimation and concluding with rotation estimation. In both cases, we
provide a top level description of the algorithm first and then give detailed explana-

tions of why we chose to build our algorithm in the way we did.
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3.8.1 Algorithm Flow for Translation Estimation. = When estimating trans-

lation, the flow of our registration algorithm is as follows:

1. User specifies the reference and input images, the number of significant coeffi-

cients to keep (N), and that translation estimation is required.
2. Perform one iteration of the shift-invariant wavelet transform on each image.

3. Mask the LH subbands of the wavelet transformed reference and input images,
keeping the largest N wavelet coefficients (both positive and negative values).
For the rest of this thesis, we refer to these coefficients as the significant coef-

ficients.

4. Compare the location of the largest significant coefficient in the masked ref-
erence subband to the locations of all NV significant coefficients in the masked
input subband. This produces N initial estimates of translation. Repeat this
procedure for the middle and tenth largest significant coefficients in the masked

reference subband so that we have 3NN initial estimates of translation.

5. Perform correlations only for the initial estimates of translation (a total of
3N correlations). Do this by circularly shifting the coefficients of the masked
reference subband according to the translation estimate and then comparing to
the masked input subband. Keep the highest valued correlation and consider

it the best estimate of translation produced by the LH subbands.

6. Beginning with the masking process, perform all the above steps again using

the HL subband of the reference and input images.

7. Perform a Pearson correlation in the spatial domain for the translation estimate
from the LH subband. Do the same for the translation estimate from the HL
subband. The correlation producing the highest value is selected as the final

estimate for translation.

8. Translate the input image to the reference image based on our final estimate

to produce the registered image.




Having presented the general flow of the translation portion of our registration

algorithm, we now discuss each of its important components.

3.8.2  Shift-Invariant Wavelet Transform. Shift-invariance is crucial in
registering strongly translated images, especially in the presence of noise. It is vital
to achieve the consistency of features in images as described in Section 3.2. Figure 3.1
illustrates what we mean by shift-invariance. We start with the orginal data sequence
and the same sequence shifted one unit to the right. Next, we take the discrete
wavelet transform of both sequences. If the discrete wavelet transform was shift-
invariant, the transform of the shifted sequence would be the transform of the original
sequence shifted one unit to the right. Clearly it is not and we see that the discrete

wavelet transform is not shift-invariant.

We use a redundant wavelet transform to provide the shift-invariance we desire.
The shift-invariant wavelet transform differs from the discrete wavelet transform in
that we account for all possible shifts of an image, not just every other shift in the

row and column directions.

Our shift-invariant wavelet transform is implemented as shown in Figure 3.2 a.
By first pulling all the filters through the decimators using the Noble Identities and
then removing the time-varying decimators, we achieve shift-invariance at the cost
of doubling the image size. Because iterations for scale m require that we use the

Noble Identities m times, we must expand the filters A and g by 2™.

For our algorithm, we only perform one iteration of the shift-invariant wavelet
transform because each subband is the same size as the original image. There are no
gains in speed by computing further iterations since the image size remains constant

after the first iteration.

3.8.8 Subband Choice. The bandpass subbands contain the most useful

information for registration purposes. According to Stone et al, the highpass subband

3-5




(a) Original data sequence (b) Sequence in (a) shifted one unit to the right
1 i T 1
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(c) Discrete wavelet transform of (a) (d) Discrete wavelet transform of (b)
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Figure 3.1.  Shift-invariance test. If the discrete wavelet transform was shift-
invariant, the sequence in (d) would be the same as (c) shifted to
the right by one unit.
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Comparison of the shift-invariant wavelet transform and the discrete
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is much more sensitive to translation than the bandpass subbands (28). This prevents
the highpass subband from preserving the consistent features we require. Also, the
highpass subband is more adversely affected by noise since it preserves high frequency
components and noise is essentially comprised of high frequency coinponents. The
bandpass subbands, however, suppress some of the negative effects of noise because
each is lowpass filtered. They also prove useful because of the image characteristics
they preserve. The LH subband performs exceptionally well for images dominated
by vertical edges and the HL subband performs well for images where horizontal

edges are prevalent.

3.8.4 Masking.' The process of masking the bandpass subbands of the
transformed reference and input images is unique to our algorithm. By assigning a
value of “1” to the top N significant coefficients and a “0” to all other values, we
weight all significant coefficients equally. This minimizes the impact of noise that
may be present in the reference or input images. Masking also allows us to perform
correlation using a logical comparison, which is much quicker than the more compu-
tationally intensive method of multiplying each matrix element point by point and
summing over each index. The small cost of masking is that we mitigate potential
positive effects of a high correlation between particularly large wavelet coeflicients
that may be present in the reference and input images. The masking process is pow-
erful as it provides highly desired noise suppression and reduces computational com-
plexity while still leveraging the advantage of using the highest magnitude wavelet

coefficients. See Table 3.1 for an example of the application of the mask.

3.8.5 Initial Estimation.  After masking the LH subband of the reference
and input images, we are left with two matrices of “1’s” (the significant coefficients)
and “0’s.” We select the location of the largest significant coefficient from the masked
reference subband and compare it to the locations of all N significant coefficients

in the masked input subband to obtain NN initial estimates of translation. If we are
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(a) Original matrix (b) Masked matrix

17 24 1 8 15 11000
23 5 7 14 16 1 0001
4 6 13 20 22 00011
10 12 19 21 3 {00110
11 18 25 2 9 01100

Table 3.1. Masking process. We create the mask by replacing the top N significant

coefficients with a “1” and assigning a “0” to all others. For this case,

N =10.
extracting the same features (i.e., using the same coefficient locations) from each
masked subband and noise has not adversely affected us, then one of our N esti-
mates should be the true translation. Thus, we only need to perform N correlations
rather than m % n correlations for a m-by-n image. For the case where little or
no noise is present, this works well. However, to account for the situation where
there is moderate or heavy noise, we need to select more significant coefficients from
the masked reference subband to compare to all the significant coeflicients of the
masked input subband. Thus, we obtain more initial estimates. This reduces the
probability that we select a significant coefficient more heavily influenced by noise
than the others. For our algorithm, we select three significant coefficients from the
masked reference subband: the largest, middle, and tenth significant coefficients. We
select these three significant coefficients because we expect them to produce features
that are distributed proportionally throughout the image as required by the criteria
described in Section 3.2. At this point in our algorithm, we have a total of 3N ini-
tial estimates of translation for the LH subband (/V estimates for each of the three
significant coefficients we selected). Next, we circularly shift the coefficients of the
masked reference subband according to each of the 3V initial translation estimates
and correlate with the masked input subband. We perform a fast correlation by using
a logical AND operation and then summing over all indices. We only care about the

number of “hits” we receive since we have masked our true coeflicient values. Thus,




the translated masked reference subband that correlates the best (highest number
of “hits” after summing) with the masked input subband is declared the translation
estimate. We perform the same procedure for the HL subband of the reference and

input images.

3.3.6 Final Estimation. In this phase of the algorithm, we refine our
intial estimates to achieve the final translation estimate. After initial estimation, we
have a single estimate of translation for both the LH and HL subbands. We apply
each translation estimate to the input image in the spatial domain and perform
a Pearson correlation with the reference image. We keep the translation estimate
which produces the highest correlation (value is between 0 and 1, with 1 representing

perfect correlation and 0 representing no correlation). The Pearson correlation is

defined in (30) as

Y (s ~7)
Z —1)55

i=1
~where N is the number of samples, x; is the reference image data, y; is the input
image data, T and 7 are the means, and S; and S, are the standard deviations of the
reference and input images, respectively. Having described translation estimation,

we now describe rotation estimation.

3.3.7 Algorithm Flow for Rotation Estimation. = When estimating rotation,

the flow of the registration algorithm is as follows:

1. User specifies the reference and input images, the number of significant coeffi-

cients to keep (), and that rotation estimation is required.

2. Transform the reference and input images from rectangular coordinates to polar

coordinates (the origin is the center of the image).

3. Perform one iteration of the shift-invariant wavelet transform on each image.

The result is a rotation-invariant polar wavelet transform.
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. Mask the LH subband of the transformed reference and input images, keeping

the largest N wavelet coefficients (both positive and negative values).

. Compare the location of the largest significant coefficient in the masked ref-

erence subband to the locations of all N significant coefficients in the masked
input subband. This produces N initial estimates of rotation. Repeat this pro-
cedure for the middle and tenth largest significant coefficients in the masked

reference subband so that we have 3N initial estimates of rotation.

. Perform correlations only for the initial estimates of rotation (a total of 3N

correlations). Do this by circularly shifting the coefficients of the masked ref-
erence subband according to the rotation estimate and then comparing to the
masked input subband. Keep the highest valued correlation and consider it

the best estimate of rotation produced by the LH subbands.

. Beginning with the masking process, perform all the above steps again using

the HL subband of the reference and input images.

. Perform a Pearson correlation in the spatial domain for the rotation estimate

from the LH subband. Do the same for the rotation estimate from the HL
subband. The correlation producing the highest value is selected as the final

estimate for rotation.

. Rotate the input image to the reference image based on our final estimate to

produce our registered image.

The process of estimating rotation is exactly the same as the process for es-

timating translation. The only exception is that we first convert our reference and
input images from rectangular coordinates to polar coordinates before processing.
Thus, we only discuss the differences between translation and rotation estimation

that result from this coordinate transformation.

3.8.8 Polar Redundant Wavelet Transform. The shift-invariant wavelet

transform does not provide rotation-invariance because of the directionality of the
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detail subbands. Rotations do not correspond to shifts of horizontal or vertical
edges in a right-handed rectangular coordinate system. Complex wavelets (11) and
steerable pyramids (27) were developed to provide greater directionality, but they
still lack the necessary rotation-invariance needed to properly estimate rotation.
Rather than attempt to calculate a marginal estimate for rotation based on the
shift-invariant wavelet transform, we instead opt for a purely polar coordinate based

solution to provide rotation-invariance.

The standard conversion from rectangular coordinates to polar coordinates is

given by

ro= \Jzr+y?
and

arctan (%) ifzx>0

T + arctan (%) ifz <0

where (z,y) are rectangular coordinates and (r, f) are the corresponding polar coor-

dinates (10).

First, we transform our image from a matrix of rectangular coordinate system
values of the form (z,y) to a matrix of polar coordinate system values of the form
(r,0). This transformation is performed only if the reference and input images were
not collected in a polar format. Next, we perform one iteration of the shift-invariant
wavelet transform as described in Section 3.3.2. Linear shifts of the columns now
correspond to rotations; thus, our shift-invariant wavelet transform is now rotation-
invariant. We refer to this new transform as the rotation-invariant polar wavelet
transform. See Figure 3.3 for an example of rectangular and polar plots for the

cameraman image.

Unlike the standard wavelet transform, it is difficult to display the subbands

on a single polar plot. Thus, we must provide a separate polar plot for each subband
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(a) Rectangular coordinates (b) Polar coordinates

Figure 3.3. Cameraman image sampled on a rectangular grid and on a polar grid.

of the decomposition as shown in Figure 3.4. When we perform the shift-invariant
wavelet transform, the information contained in each subband is highly directional:
the LH subband preserves vertical edges, the HL subband retains horizontal edges,
and the HH subband keeps the cross-hatch as described in Section 2.3.5. In the polar
environment, these subbands preserve different image characteristics since rows and

columns contain data of constant radius and constant angle, respectively.

The polar LL subband remains our coarse approximation since it is a blurred,
smoother version of our original polar image created by lowpass filtering along the
radii and angles. Since the polar LH subband is now formed by lowpass filtering
the radii and highpass filtering the angles, it preserves edges as they are rotated
around angles and smoothes edges along the radii. Similarly, the polar HL subband
keeps information about edges along the radii, but blurs edges rotated around angles.
The polar HH subband preserves a combination of edges that persist along radii and
around angles. Thus, we again choose to use the bandpass subbands for our algorithm
because they provide the necessary noise tolerance (they are lowpass filtered along

either the radii or angles) and the required directionality for extracting polar features.
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(a) Polar LL subband (b) Polar LH subband

Figure 3.4.

Rotation-invariant wavelet transform (one iteration). It is not feasible
to display polar wavelets in the same manner as standard wavelets

because of the polar sampling grid. A separate plot is required for
each subband.
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The wavelet recursion equations of Section 2.3.2 do not hold for our imple-
mentation of the polar redundant wavelet transform. These equations were derived
for uniform integer shifts and dilations of the wavelet basis functions. Clearly, the
polar grid is non-uniform and does not allow for this as shown in Figure 3.5. For

simplicity we assume the polar data points are all uniformly spaced.

Figure 3.5. Rectangular versus polar sampling grids. When convolving on the
rectangular grid (the dots), all points are uniformly spaced. This is
not true for the polar grid (the X’s), where points along the radii are
uniformly spaced, but not the points around the angles.

To ensure this simplification is valid, we test our polar redundant wavelet
transform to see if it is well behaved. First, we perform three iterations of the polar
redundant wavelet transform. Next, we keep only the top 5% of the wavelet coeffi-
cients (zero all others) and invert. If our reconstructed image is of “good” quality
(i.e., recognizable and free of significant artifacts), we know our transform is stable
and aéceptable to use in our registration algorithm. Figure 3.6 demonstrates that

our new transform is well behaved and acceptable to use when estimating rotation.

After creating the polar LH and HL subbands for the reference and input
images, we follow the exact same process as we did in translation estimation except

that we are now calculating a rotation estimate.
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(a) Original image (b) Reconstructed image

S
e

Figure 3.6.  Test for behavior of the polar redundant wavelet transform. We per-
form three iterations of the polar redundant wavelet transform on our
original image, keep only the top 5% of the wavelet coefficients (zero
all others), and then invert. The transform is well behaved because the
reconstructed image is recognizable and free of significant artifacts.

3.4 Summary

In this chapter, we dicussed why the parsimony, locality, and clustering prop-
erties make wavelets suitable for feature extraction in registration algorithms. Next,
we described the translation and rotation estimation components of our registration
algorithm. Redundant wavelet transforms are used to provide the shift-invariance
(for translation estimation) and rotation-invariance (for rotation estimation) neces-
sary to extract consistent features for matching. The bandpass subbands are masked
to increase computational efficiency and reduce the effects of noise. Initial estimates
are refined to a single translation or rotation estimate for each bandpass subband
by performing logical correlations between the shifted masked reference and the
masked input. A final estimate is determined by performing a Pearson correlation

in the spatial domain.

3-16




IV. Results

4.1 Introduction

In this chapter, we analyze specific data illustrating the solid performance of
our registration algorithm. First, we describe the design of our validation study
by explaining the measures of performance, why the Daubechies (7,9) wavelet was
selected over other wavelets for use in testing, and exactly how the data was collected.
Next, we discuss the results obtained for translations first, and then rotations. We
select the best choice for the number of significant coefficients, N, based on the
simulation data. Finally, we assess the robustness of the algorithm by determining
the error resulting when the origin of the input image is misaligned with respect to

the reference image.

4.2 Design of the Algorithm Validation Study

The objective of our study is to validate the effectiveness of our registration
algorithm in registering an input image relative to a reference image. To do this, we
first determine if a redundant or critically sampled wavelet transform provides better
registration accuracy since accuracy is most important objective. Next, we compare
the performance of the LH, HL, and HH subbands to verify that the bandpass
subbands are a sound choice. Finally, we empirically determine the best choice for

the number of significant coefficients (V) to use in our algorithm.

4.2.1 Test Images.  We select the 256-by-256 8-bit grayscale Lenna (Fig-
ure 4.1 a) and cameraman (Figure 4.1 b) images on which to conduct our validation
experiments. Besides that fact that these images are commonly used in image pro-
cessing, they are suitable because each contains one significant object in the fore-
ground to be registered and each has a balance of high frequency components (edges)

and low frequency components (regions of similar pixel values) to test the flexibility
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of our algorithm. For Lenna, her hat and the feather are the dominant high fre-
quency components; the camera and the cameraman himself are the dominant high

frequency components for that image.

(a) Lenna image (b) Cameraman image

Figure 4.1. Lenna and cameraman images. These images are used in validation
testing of our algorithm.

4.2.2  Peak Signal-to-Noise Ratio.  Peak Signal-to-Noise Ratio (PSNR) is
used in this study as a measure of how much an image is degraded by noise. PSNR

is defined as
maz |z;|

where z; are the pixel grayscale values of the original image, Z; are the pixel grayscale

PSNR = 20log (4.1)

values of the corrupted image, and and N is the number of pixels in the image. A
PSNR of 30 dB or higher corresponds to an image that is considered to be near
perfect to the human eye. For any PSNR less than 30 dB, the image appears noisy.
Thus, for our experiments, we select PSN R values of 30 dB and 22 dB because they

represent high image quality (little noise) and poor image quality (significantly de-




graded by noise), respectively. See Figure 4.2 for examples of Lenna and cameraman

at PSNR values of 30 dB and 22 dB.

4.2.83 Selection of Wavelet. The biorthogonal Daubechies (7,9) wavelet
was chosen for use in our experiments over other wavelets for several reasons. First,

the Daubechies (7, 9) filters

h = [0.0378 —0.0239 —0.1106 0.3774 0.8527 0.3774 —0.1106 — 0.0239 0.0378 ]

g = [0.0645 —0.0407 —0.4181 0.7885 — 0.4181 — 0.0407 0.0645 ]

are well behaved. Because the filters are symmetric, they exhibit the highly desirable
linear phase property. Next, they possess excellent localization in space and spatial
frequency, which results in wavelet coefficients that decay rapidly (parsimony). This
is especially important when selecting features for matching as discussed in Sec-

tion 3.2. See Figure 4.3 for an illustration of the parsimony of the Daubechies (7, 9)

~ wavelet. By reconstructing the Lenna image using a limited number of the most

significant wavelet coefficients, we see that the Daubechies (7,9) wavelet provides
the best PSNR when compared to the Haar, Daubechies (4), and Daubechies (8)

orthogonal wavelets.

4.2.4 The Validation Study.  All simulations of our registration algorithm
were accomplished using MATLAB, version 5.3. For each PSNR value (30 dB and
22 dB), we ran 100 iterations to achieve robust statistical results. Since determining
the best choice of NV was a goal of this study, we let NV range from 10 to 250 in steps
of 20. A larger range is more desirable, but we selected this range because it was

computationally manageable given the amount of iterations being performed.
The input image for translation testing was created by circularly shifting the
reference image 7 pixels in the positive x-direction (T, = 7) and 4 pixels in the posi-

tive y-direction (T, = 4) of a right-handed rectangular coordinate system. Similarly,




Figure 4.2.

mage with
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Examples of different PSNR values for the Lenna and cameraman
images. PSNR values of 30 dB and 22 dB represent images of high
quality (little noise) and poor quality (significantly degraded by noise),
respectively.
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Figure 4.3.

100

500 1000 1500 2000
Number of Significant Coefficients (N)

PSNR versus the number of largest magnitude wavelet coefficients
(N) used in reconstruction for the Daubechies (7,9) (solid line),
Daubechies (8) (dashed line), Daubechies (4) (dash dot line), and the
Haar (dotted line) orthogonal wavelets. We see that the Daubechies
(7,9) wavelet provides the most parsimonious signal representation
(ideal for registration) since it provides the best PSN R for a given N.
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the input image for rotation testing was formed by circularly shifting the columns
(which correspond to constant angles because we are in polar coordinates) of the
polar reference image 13 pixels (R = 13). For our implementation, a shift of 1 pixel
corresponds to a shift of 1°. A different realization of additive white Gaussian noise
was added to the reference and input images for each iteration in the translation
and rotation cases. See Figures 4.4 and 4.5 for examples of translated and rotated

versions of Lenna and cameraman, respectively.

When using the discrete wavelet transform with our algorithm, a shift of 1 pixel
in the wavelet domain corresponds to a shift of 2 pixels in the spatial domain because
of the effects of downsampling. The discrete wavelet transform is only accurate for
one of four possible shifts of the images because we downsample both the rows and
columns by two. Because our algorithm is precise only to 1 pixel in the translation
case and 1° in the rotation case, it is impossible to estimate any odd number trans-
lation or rotation when using the discrete wavelet transform since we must double
the estimate of our algorithm. Thus, we loosen the criteria of registration accuracy.
A correct estimate for translation is T, = 6, 7, or 8 pixels and T, = 3, 4, or 5 pixels

and a correct estimate for rotation is R = 12, 13, or 14°.

4.8 Translation Performance

We first examine the performance of our algorithm for estimating translation.

4.8.1 Redundant versus Standard Wavelet Transforms. Both the redun-
dant and discrete wavelet transforms meet the last three criteria of Li and Zhou as
described in Section 3.2. The difference is in the first requirement, consistency of
features. The shift-invariant wavelet transform maintains consistency of features as
images are translated. The discrete wavelet transform does not. For this reason, we
expect the shift-invariant wavelet transform to provide superior registration accuracy

over the discrete wavelet transform.




Figure 4.4.

(b) Translated Lenna

Translated and rotated versions of Lenna. Top row: (a) Lenna (in
rectangular coordinates) and (b) Lenna translated by T, = 7 and
T, = 4 pixels (circular shifts). Second row: (c) Lenna (in polar
coordinates) and (d) Lenna rotated by R = 13°.
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(b) Translated cameraman

s

(a) Cameraman

Translated and rotated versions of cameraman. Top row: (a) Camera-
man (in rectangular coordinates) and (b) Cameraman translated by
T, = 7 and T, = 4 pixels (circular shifts). Second row: (c) Camera-
man (in polar coordinates) and (d) Cameraman rotated by R = 13°.

Figure 4.5.




Figure 4.6 confirms this. The shift-invariant wavelet transform provides higher
registration accuracy for every value of N for both values of PSNR. All the curves
follow a general upward trend as N increases, supporting our expectation that as we
use more significant coefficients in matching, we achieve a higher level of accuracy.
The best explanation for the drop in performance of both transforms in Figure 4.6 d
for N = 110 and greater is that this is the point of diminishing returns for N for
this image. Beginning with this value of N, enough noise creeps in and replaces
legitimate significant wavelet coefficients as features for matching. Since we do not
observe this effect for the shift-invariant wavelet transform in the plot for the Lenna
image, we hypothesize that this point of diminishing returns occurs at a value of N
greater than 250. Hence, the point at which noise adversely affects our registration

accuracy is image dependent.

4.8.2 Subband Comparison. Since we have determined from our simula-
tion that the shift-invariant wavelet transform provides better registration accuracy
than the discrete wavelet transform, we now compare the performance of the detail

subbands of the shift-invariant wavelet transform only.

The Lenna image contains several vertical edges: her hat, the feather in her
hat, her right arm, and the right side of her face. The cameraman image is also
heavily populated by vertical edges: the tripod, the body of the cameraman, and
the buildings in the background. Although horizontal edges exist in both images,

they are fewer and less persistent than the vertical edges.

Stone et al showed that the HH subband is the most sensitive subband to
translation in the presence of white noise (28). Since, the HH subband is created
by highpass filtering the rows and columns of the original image, we expect it to
also be the most sensitive to noise since noise is comprised mainly of high frequency
components. For these reasons, we anticipate the best registration accuracy from

the LH subband since it preserves vertical edges better than the other subbands.
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Registration accuracy of the shift-invariant (solid line) and discrete
wavelet transforms (dashed line) versus the number of significant co-
efficients (N) used for feature matching. For a translation of T, = 7
pixels and T, = 4 pixels, the shift-invariant wavelet transform provides
better registration accuracy because it maintains consistent features.
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Figure 4.7 suppdrts this thought. For both Lenna plots and the cameraman
plot for PSNR = 22 dB, the LH subband is significantly more accurate than the
other two subbands over the entire range of IV because it extracts the best features,
a direct result of the Lenna and cameraman images being dominated by vertical
edges. The cameraman plot for PSNR = 30 dB does have an anomaly at N =70
for which we have no immediate explantion. We leave this for future research. In
Figures 4.7 a and b, where there is little noise, the HH subband provides consistently
better registration than the HL subband. This is attributed to the fact that the HH
subband preserves 45° edges and the hat and the tripod are dominant edges oriented
at roughly 45° in the Lenna and cameraman images, respectively. Notice in Figures
4.7 ¢ and d, when noise is significant, the HH subband provides little accuracy over
the entire range of N, confirming our earlier thought. Recall from the previous
section our discussion of the diminishing returns of N as noise becomes a factor.

This is profoundly evident in Figure 4.7 d starting at N = 110.

4.4 Rotation Performance

When estimating translation, we observed that the shift-invariant wavelet
transform provided the best registration accuracy because it maintained consistency
of features. The LH subband was the primary subband driving registration accuracy
because our test images are highly populated with vertical edges, the information
contained in the LH subband. We now examine the performance of our algorithm

for estimating rotation to see if similar results occur.

4.4.1 Redundant versus Standard Wavelet Transforms. Recall from Sec-
tion 3.2 the need for consistent features for matching. We found in Section 4.3.1
that a shift-invariant transform provided the consistency required for accurate reg-
istration results. We anticipate the same result when using our rotation-invariant

polar wavelet transform.

4-11




100

(a) Lenna image with PSNR = 30 dB

©
o O O
T T T

[A)
S o ©
-
AN

Percentage Correct (%)
A OO N @
S
/

\

Ay
\

I

T v

. .

y 7

(c) Lenna image with PSNR = 22 dB

50 100 150 200 250
N (Number of Significant Coefficients)

B
o
T

Percentage Correct (%)
w
o

-
o
T

(=]

[N
o
T
.

T T

[=)

Figure 4.7.

50 100 150 200 250
N (Number of Significant Coefficients)

100

(b) Cameraman image with PSNR = 30 dB

951
90F

80} 7/
75}

Percentage Correct (%)

70

65 -

/

! ‘\‘/
i
{
/’/ i \

85+ '
/,/ ‘

i T ==
// ,"‘ ~ o ° &/ 4 T

vk

A
[ \ / N
/"/—" \ / - \\
\// ™~ n
/ v/ T~
[N

\/ ” \ /

SN 4
\
N\

i

i
a 4

600

100

50 100 150 200 250
N (Number of Significant Coefficients)
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Registration accuracy of the LH (solid line), HL (dashed line), and HH
(dash dot line) subbands versus the number of significant coefficients
(N) used for feature matching. For a translation of T, = 7 pixels and
T, = 4 pixels, the LH subband provides the best registration accuracy

since it preserves vertical edges.
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The results for both the polar discrete wavelet transform and the rotation-
invariant polar wavelet transform are outstanding for both images and for both values
of PSNR. In all plots, for N = 50 or greater, registration accuracy is consistently
95% accurate or higher. This level of accuracy is never achieved when estimating

translation, even in the case where there is little noise present.

The rotation-invariant polar wavelet transform does provide better perfor-
mance than the polar discrete wavelet transform. Recall from Section 4.2.4, we
determine a correct totation to be B = 12, 13, or 14° because the polar discrete
wavelet transform cannot estimate odd valued rotations. Thus, if we only consider
R = 13° as a correct rotation estimate, the polar discrete wavelet transform will
never estimate the true rotation. This further strengthens the idea that invariance

is crucial in accurate registration.

4.4.2 Subband Comparison.  As discussed in Section 4.3.2, both the Lenna
and cameraman images are heavily dominated by vertical edges. For this reason, we
expected the LH subband to provide the most accurate registration results since it
preserves vertical edges. Because they are created from polar coordinates, the polar
detail subbands provide different information than the standard detail subbands.
The polar LH subband preserves edges around angles and the polar HL subband
preserves edges along radii. Examining the polar versions of Lenna and cameraman
(Figures 4.4 ¢ and 4.5 c), we observe that both have edges that persist along the
radii. For Lenna, these edges are her hat and feather; for cameraman, these edges
are the tripod and his body. Hence, we anticipate the polar HL subband to provide

the most accurate registration results.

Figure 4.9 illustrates what we expect. The polar HL subband consistently
provides the best results, particularly when there is significant noise. When there
is little noise present (PSNR = 30 dB), the polar HH subband performs well. In

the presence of significant noise, we observe that accuracy of the polar HH subband
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Registration accuracy of the rotation-invariant (solid line) and polar
discrete wavelet transforms (dashed line) versus the number of sig-
nificant coefficients (N) used for feature matching. For a rotation of
R = 13°, the rotation-invariant polar wavelet transform provides bet-
ter registration accuracy because it maintains consistent features.
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declines considerably, although there is an upward trend as N increases. This decline
is expected; even though we are now working on a polar sampling grid, noise still
corresponds to high frequency components and the polar HH subband preserves these

components along the radii and around the angles.

Having determined from our simulations that the bandpass subbands of redun-
dant wavelet transforms provide the highest registration accuracy in the presence of
noise, we move on to the final objective of our study, the empirical determination of

the best selection for N.

4.5 Empirical Determination of N

Since N is the number of the largest magnitude wavelet coefficients we keep for
matching, we expect better algorithm performance as N increases (more features for
matching intuitively equates to better accuracy). Examining the curves of Figures 4.6
and 4.8, this is the case (to a point). The costs of using larger values of N are a
longer computation time and more significant coefficients are adversely affected by
noise when matching features. Thus, our goal is to estimate the lowest N while

maintaining the best possible registration accuracy.

The selections below are by no means optimal and the true choice of N is highly
dependent on the image. We pick the smallest value of N which is 95% accurate
since it is unrealistic to expect to achieve 100% accuracy in the presence of noise. If
there is no N which produces that level of accuracy, we select the N which provides

accuracy nearest to 95%.

When estimating translation, choosing N = 100 gives a minimum registration
accuracy of 95% when there is little noise present (PSNR = 30 dB). For the case of
significant noise (PSNR = 22 dB), choosing N = 170 gives a minimum registration
accuracy of only 67%. Better results may be achieved with values of N beyond 250,

but this is not guaranteed since there is a point of diminishing returns. For larger
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Registration accuracy of the polar LH (solid line), HL (dashed line),

and HH (dash dot line) subbands versus the number of significant
coefficients (N) used for feature matching. For a rotation of R = 13°,
the polar HL subband provides the best registration accuracy since it

preserves edges along the radii.
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values of N, the significant coefficients are more adversely affected by noise. Hence,

we leave finding the optimum choice of N as future research.

When estimating rotation, choosing N = 50 gives a minimum registration
accuracy of 95% regardless of the amount of noise present. This small value of N

allows for fast rotation estimation.

4.6 Robustness

We have examined the performance of our algorithm for a specific translation
and a specific rotation independently. We now attempt to determine empirically
the amount of translation we can tolerate and still correctly estimate rotation when
noise is not present. Prior to the conversion to polar coordinates, we shifted our
reference image (thus misaligning the origin). We then ran our registration routine

to determine the effect of this misalignment on our algorithm performance.

From Table 4.1, we see that for the Lenna image, our algorithm is highly shift
dependent as to whether we correctly register the input image for a rotation of
R = 13° (using our criteria of Section 4.2.4). For the cameraman image (Table 4.2),

the opposite is true. The error is minimal and slowly grows with more pixel trans-
lations (as we go down and right across the table). Thus, we see that our algorithm
robustness is highly’image dependent, but we can still determine the correct rotation

for small levels of misalignment.

4.7 Summary

After describing the design of our validation study to include the measures
of performance, why the Daubechies (7,9) wavelet was selected over other wavelets
for use in testing, and exactly héw the data was collected, we analyzed the results
obtained from our simulations for translation first and rotation second. We observed
that the redundant wavelet transforms provided higher registration accuracy than

the discrete wavelet transforms because of their invariance, which allowed for the
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Magnitude of Error for Lenna (in degrees)
[ Joli1[z[s5]a[5]6]7]58]0]i0]
0 0 42 | 44 2 0 0 0 0 0 0
90 | O 41 1 0 2 0 3 3 3 3
1 [ 1734160 {172 | 1 (171} 2 |[175| 13 [179 | 12
159 {1591 O 173|191 1 |171} 14 [ 179 | 13 | 12
180 1 j1104| O 0 1 15 {180 | 14 | 180 | 3
158 1 |103| O 0 1 15 1 14 | 3 3
0 0 [103| 1 (170 16 {102 15 | O 0 1
103 O 0 (102102101 | 16 0 0 1168 | 3
156 | 102 | O 0 |101 {101 101 | 16 | 100 | 100 | 168
0 |{102 {10110t O |101| 100|100 |100| O 0
0 0 101101 |100| O {100{100( 99 | 99 0

QOO W IN=O
[\
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Table 4.1.  Algorithm robustness for Lenna. The first row (in boldface) is the
amount the input image pixels have been shifted in the positive x-
direction. The first column (in boldface) is the amount the input image
pixels have been shifted in the positive y-direction. The values of the
table are the magnitude of error in degrees between the actual rotation
value (R = 13°) and the estimated rotation value for the noiseless case
when N = 10. The more pixel translation the algorithm can tolerate
(i.e., still correctly estimate rotation), the higher the level of robustness.
Note that the shift is applied prior to the conversion to polar coordinates
to simulate misalignment of the origin.
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Magnitude of Error for Cameraman (in degrees)

| [o]1]2]3[4 |5 [6[7[8] 9] 10 |
ofoloflof2]2]2]2{1]3]3 3
1 fojoj1|1{1]0[0]|0]|2]2 2
2 otol1jol44{0lOf1]1]1 0
32/4]/0/0[0|0|0][0|1]46 0
4 1111l 2]1]2]0]0]0O 0
5 (27212331 ]1]1]1}1 1
6 [3l2]2]2]21212|2]2]2 47
7 13[3[313[3][3][3[3]2]2 2
8 43641 4] 431333 3
9 55|54 7 [47|5|4|4]| 4 3
106|565 5[5 |5|5|5]| 4 4

Table 4.2.  Algorithm robustness for cameraman. The first row (in boldface) is
the amount the input image pixels have been shifted in the positive x-
direction. The first column (in boldface) is the amount the input image
pixels have been shifted in the positive y-direction. The values of the
table are the magnitude of error in degrees between the actual rotation
value (R = 13°) and the estimated rotation value for the noiseless case
when N = 10. The more pixel translation the algorithm can tolerate
(i.e., still correctly estimate rotation), the higher the level of robustness.
Note that the shift is applied prior to the conversion to polar coordinates
to simulate misalignment of the origin.
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extraction of consistent features. The bandpass subbands were observed to provide
solid registration results in the presence of little and significant noise, confirming our
choice to use them in parameter estimation. We empirically determined the best
choices of N depending on the amount of noise present observing that we achieve
much better results for much smaller values of N when estimating rotation. Finally,
we tested the robustness of the algorithm when estimating an image that had been
translated and rotated. For this case, we saw that our algorithm robustness was
highly image dependent, but we were able to determine the correct rotation estimate

for small levels of misalignment.
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V. Discussion and Future Work

5.1 Contributions of this Thesis

In this thesis, we developed a new algorithm for registering a strongly trans-
lated or rotated input image relative to a reference image in the presence of additive
white Gaussian noise. Redundant wavelet transforms outperformed the discrete
wavelet transform because of their invariance. We verified that although the high-
pass subband was too sensitive to noise to use in registration, the bandpass subbands
were well suited because of the characteristics of the original image they preserved.
We showed that registration accuracy was dependent on the number of significant
coefficients (N) kept for a given image PSNR and that our algorithm was robust

enough to handle small levels of misalignment when estimating rotation.

In accomplishing the goal of accurate registration, we also successfully devel-
oped and utilized a new computationally efficient masking procedure to suppress
the adverse effects of noise and a rotation-invariant wavelet transform, which proved

especially effective for estimating rotation.

5.2 Potential for Future Research

There are several areas of potential research that may be explored in future

theses. We present the most interesting.

5.2.1 Develop a More Robust Polar Wavelet Transform.  Currently the po-
lar redundant wavelet transform is computed simply by converting rectangular im-
age coordinates to polar coordinates and then performing the shift-invariant wavelet
transform. Although shown to be effective in the image registration problem, this
method of creating the wavelet transform violates the wavelet recursion equations.

A more mathematically accurate transform must be developed. Additionally, ap-
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plication of this new transform to problems other than image registration must be

explored.

5.2.2 Leverage Multiscale Properties. Our registration algorithm is de-
signed for accuracy, not speed. For use in real world applications, the algorithm
must be made more computationally efficient to better handle large sets of imagery.
A possible way to speed up the algorithm is to leverage the multiscale properties
of wavelets and use a coarse-to-fine iteration strategy between the same and dif-
ferent subbands. There is particular promise for cultivating this idea since wavelet
coefficients at higher scales appear to be more correlated than those at lower ones
(30). Additionally, different (and perhaps better) information may be provided at

the lower scales.

5.2.8 Calculate Translation and Rotation Simultaneously. Our algorithm
performs exceptionally well in registering strongly translated or rotated images; how-
ever, it does not support translation and rotation simultaneously. Obviously real
world data collected by aircraft or satellites has components of both as well as some
scaling and perhaps shearing. A true challenge is to modify our algorithm to simul-
taneously process translations and rotations, and then to extend to more difficult
data sets where affine and polynomial transformations are required. This is an ex-
ceptionally challenging problem since estimating translation or rotation alone is a

significant task; joint estimation is many times more difficult.
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Appendiz A. Additional Information on Filter Banks

We provide additional information regarding signal reconstruction using filter banks.

For more information, refer to (5, 32, 33).

A.1 Polyphase Representation

The polyphase representation provides an easier way to analyze filter banks
(5, 32). To best explain the polyphase representation, we will divide the filter h(n)
into its even and odd polyphase components. First, we begin with the definition of

the z-transform (32) of h(n)

HZ) =3 hn)™

n=—oo

Then we break that sequence into a sequence of the even components of h(n) and a

sequence of the odd components of h(n),

H(z) = i h(2n)z72" + i h(2n + 1)z~ CntD),

n=-—0oc n=—oo

Simplifying the z exponent in the last term above since we are integrating over all

possible values of n, we see

H(z) = i h(2n)z™" + i h(2n + 1)272",

n=-—oc n=—oc

Finally, we write H(z) in terms of new filters

o0

Ey(z) = _Z_: h(2n)z"
Ei(z) = i h(2n + 1)27",




which are the even and odd polyphase components, respectively. This yields
H(Z) = E(](Zz) + Z_lEl (22).

Figure A.1 illustrates how polyphase components replace the original filter H(z) in
a filter bank. First, we start with the original system. Next, we break H(z) into
its even and odd polyphase components and then apply the same decimator to both
channels. Finally, we invoke the Noble Identity for Decimators (Equation 2.4) and
bring Eo(2%) and E;(2?) through the decimators to achieve the polyphase represen-

tation of the original system.

In general, the polyphase representation of a filter H(z) decimated by decima-

tion ratio M is

H(z) = Eo(zM)+ 2B (2M) + ...+ 2= M- VEy, ,(zM)
M-1
= 27 B (2M)
i=0
The polyphase representation is derived in the same manner for expanders

with the exception that the Noble Identity for Expanders (Equation 2.5) is applied
instead of the Noble Identity for Decimators.

A.2 Perfect Reconstruction

Perfect reconstruction is achieved when the output of a filter bank is a delayed
(and maybe scaled) version of the input (5, 32). Given a set of analysis bank filters,
perfect reconstruction may be achieved through careful selection of the synthesis

bank filters.




E,(2%)
— H(2) l 2 z' —l

E, (@) 12
(a) (b)

— E,@) |2 2 = Ey
I il
E,(z%) 2t |2 = E@

(© (d)

Figure A.1. Polyphase representation. (a) Original system. (b) Substitution of
polyphase components for H(z). (c) Splitting the decimator. (d) Ap-
plication of Noble Identity for Decimators.

Each of the filters H;(z) and Fj(z) are first written in terms of their polyphase

components, E;;(z) and R;;(2), as follows

M-1

Hi(z) = Y z7Ei;(")
§=0
M-1 .

Fj(z) = 2 MR (M),
=0

For convenience in analysis, the polyphase components of the analysis filters H;(z)
may be placed in the matrix E(z™), where the i" row of E(z") contains the
polyphase components of H;(z). Similarly, the polyphase components of the syn-
thesis filters Fj(z) comprise the j** columns of the R(z™) polyphase matrix. Thus,




we have

Ey(2M) Eo1(zM) -+ Eoum-1(2M)
o = | B Bl B
i Ervo10(2™) Enyo10(ZM) -+ Epoyr—1(2) ]
Roo(2M) Ro1(zM) -+ Rom-1(2Y)
oy < | T B e
| Ry-10(2") Rar-12(2™) -++ Ryoama(2Y) ‘

Applying the Noble Identities to these matrices, we can redraw our M channel

filter bank into the polyphase equivalent shown in Figure A.2.

A

X[n] X[n]
_—-1ﬁ|—\J/Ml_> Eo,o EO,M-1 ‘7 F{o,o RM-1,o wi»
z R e T R U

1-M : : l:/l-1
L’W» Em10 " Evaama o Romt =+ Ryng g —T™ z

Figure A.2. Polyphase representation of an M-channel, maximally decimated uni-
form filter bank. Polyphase matrices E(z) and R(z) are both M x M.

We achieve perfect reconstruction if and only if

P(z):R(z)E(z)zcz‘""[ —?1 : I‘g‘} (A.1)

where c is a scalar, ng is a nonnegative integer, and r € {0,1,..., M —1}. When we let

r = 0, we can simplify the equation above to P(z) = R(z2)E(z) = cz=™I);. Clearly




we must have R(z) = cz”™E~1(2) for this equation to hold true for a given E(z).
In general, E~!(z) does not exist. If E~'(z) does exist, it may only be realizable
with infinite impulse response (IIR) filters even if E(z) is composed entirely of finite
impulse response (FIR) filters. To avoid this problem, we must choose E(z) such

that the det[E(z)] is a delay (32).

A special useful case is when we select E(z) to be paraunitary. E(z) is parauni-
tary when E~!(z) = E(z), where E(z) = E¥(z7"). In other words, we find E¥ (z71)
by replacing all z’s in E(z) with 271, transposing, and taking the complex conjugate.
To satisfy Equation A.1 and achieve perfect reconstruction, we let R(z) = E(z) to
ensure P(z) = R(z)E(z) = I. An additional benefit of choosing R(z) = E(z) is that
if E(z) is comprised entirely of FIR filters, then R(z) is guaranteed to also be com-
prised entirely of FIR filters. Thus, paraunitary filters greatly simplify the design of

FIR perfect reconstruction filter banks (32, 33).




Appendiz B. Additional Information on Wavelets

We provide additional information regarding reconstruction of orthogonal and biorthog-

onal wavelets and selection of filters that result in perfect reconstruction for the filter

bank implementation of the discrete wavelet transform.

B.1 Reconstruction

In Sections 2.3.1, 2.3.2, and 2.3.3, we showed how to decompose the signal f
into its orthogonal components. Now, we will show how to reconstruct f from these

components.

Starting at scale m = 1, we know that f exists in V; and can be represented

as

Z co(k) o i (t)-

We must be given the coarse and detail coefficients, ¢;(k) and d;(k). Recall
that these coefficients represent the projection of f into Vi and Wi, respectively.

Since V; @ W, and V; N W, = ¢,

Z c1(k)ri(t) + D di(k)hrx(t). (B.1)

k

Next, we take the inner product of both sides of the equation with ¢gn(t).
Since {@on(t)} are orthonormal, (f, ¢on) = co(n). Recall from Section 2.3.2

h(n—2k) = (b1, don)
g(n—2k) = (Y1, bon) -
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Substituting into Equation B.1

n) = zk: ci(k)h(n — 2k) + > di(k)g(n — 2k). (B.2)

k

where co(n) are the coefficients of f € V4. This provides insight into signal recon-
struction when using the filter bank implementation of the inverse discrete wavelet
transform. Note that for the orthogonal discrete wavelet transform described, the
digital filters A and g must be the same for the forward and inverse transforms to

achieve perfect reconstruction of the signal (3).

Having presented orthogonal reconstruction, we present a more detailed look
at biorthogonal wavelets to include the biorthogonal wavelet recursion equations,
construction of the discrete wavelet transform using biorthogonal wavelets, and signal

reconstruction.

B.2 Biorthogonal Wavelet Recursion Equations

Like orthogonal wavelets, we must have wavelet recursion relations

I

¢m,n (t) Z hn (k)¢m~1,k (t)
¢m,n(t) = Zgn ¢m 1,k )

| To find h, we must take the inner product of ¢, , with its dual function am_l,k

< ‘:bm,m ¢m—1,k >

Il

Zhn(n) <¢m—1,m (}zm—l,k>
= 3 ha(n)8(k —

= ha(k).

Similarly, g,(k) = <z/)m,n, ¢~3m_1,k>. We have equivalent recursion relations with

h and § for the dual basis.
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B.3 Construction of the Biorthogonal Discrete Wavelet Transform

Given the dual basis, we will decompose a signal f = >, cm_l(k)q?m_l,k(t),

which exists entirely in V,,,_, into

f(t) = Z Cm(k)gm,k(t) + ; dm(k)lzm,k(t)

k

To find ¢, (k), we take the inner product of f with ¢, due to the biorthogo-

nality condition. This yields

Cm(k) = (f7 ¢m,k)
= Z Cm—1 (n) <¢m,ka 5m—1,n>
= D cma1(n)hi(n). (B.3)

Likewise, we find d,,(k) by taking the inner product of f with 1
dm(k) =D em-1(n)gi(n). (B.4)

The digital filters h and g are independent of the level of decomposition. Equa-
tions B.3 and B.4 perform the decomposition and are equivalent to the orthogonal

wavelet transform equations derived in Section 2.3.3.

B./ Reconstruction with the Biorthogonal Discrete Wavelet Transform

Given the biorthogonal wavelet decomposition for scale m,

ft) = ; Cm (k) bm i (t) + ; o (K)o (2),

we will reconstruct our signal f.




We know f exists entirely in V,,,_; and may be represented as
F®) =3 em-1(k)m-1(0)-
k
Taking the inner product of f and ¢p,_1,(t), we get

(frbmosn) = Eens(k) (Gm-sis bm-vn)
= zk:cm_l(lc)é(k—n)
= cmo1(n)
= Yen(h) N 3 (k) (Pmtr Bm-10)
= ;an(k)ﬁk(n) + Z;dm(k)gk(n).

We see that this is exactly the same as in the orthogonal transform case except
that we use biorthogonal filters h and g which are different from our h and g filters

used for decomposition.

B.5 Selection of Wavelet Filters

In section A.2, we stated that careful selection of the synthesis bank filters

leads to perfect reconstruction. We now discuss how to select these filters.

Given lowpass filter h(n), the following choices

G(z) = H(-=2)
H(z) = H(z)
G(z) = —-G(z2)=—H(-2)

lead to alias cancellation. However, the only orthogonal wavelet with these properties

that may be implemented with FIR filters which yield perfect reconstruction are the




Haar filters (32):

h = [7071 .7071]

g = [7071 —.7071]

Thus, we must move to other FIR filters that yield perfect reconstruction. The
best set to use are the paraunitary filters because they greatly simplify the design of

perfect reconstruction FIR filters. In this case, we have

G(z) = H(-27Y
H(z) = H(z™Y)
G(z) = G(z™)

which corresponds to orthogonal wavelets (32).

For biorthogonal wavelets, we have the similar relationship between H(z) and
G(z), and between G(z) and H(z). H(z) and G(z) are not related in the orthogonal

way.
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